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Abstract We study holonomy groups coming from F-theory compactifications. We focus
mainly on SO(8) as 12 − 4 = 8 and subgroups SU(4), Spin(7), G2 and SU(3) suitable for
descent from F-theory, M-theory and Superstring theories. We consider the relation of these
groups with the octonions, which is striking and reinforces their role in higher dimensions
and dualities. These holonomy groups are related in various mathematical forms, which we
exhibit.
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1 Why Extra Dimensions

Once one includes strings and/or other extended objects, extra dimensions became un-
avoidable: for example, particles dualize in four dimensions, like electrons and magnetic
monopoles, but strings dualize in six, and membranes in eight. On the other hand, e.g. string
fields like to share supersymmetric partners, so Susy also is more cogent in higher dimen-
sions. Hence the necessity of dimensional reduction, introducing tiny compact spaces, as we
see only four extended dimensions [1].
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In this paper we discuss the geometry of these compact spaces from the point of view of
holonomy groups and string dualities; we focus mainly on the mathematical side of the new
constructions. The preferred extra freedoms are needed for a total of ten, eleven or twelve
dimensions: superstrings live in ten (whereas the bosonic string needs 26), but M-Theory
(Witten, 1995) prefers 11 [2–10], and F-Theory (Vafa, 1996, 2008) uses 12 [11–17].

Over the past few years, there has been an increasing interest in studying duality in re-
lation to supersymmetry and compactified manifolds [1, 18–23]; by duality we first under-
stand the naive concept that a field strength F of dimension d in a manifold of dimension
D dualizes to another field strength F ∗ of dimension D − d . For example, strings couple to
potential 2-forms Bμν , hence to a 3d field strength, and in D = 10 dimensions the dual of
a fundamental string is a 5-brane. More geometric is the duality between some Calabi-Yau
(CY) spaces, discovered by Candelas et al. in their search for interesting manifolds suit-
able for heterotic string compactification, called mirror symmetry [24]. The most important
consequence of the string duality was found by Witten: namely, the five viable superstring
theories are special limits in the moduli space of the same theory, called M-Theory [2].
M-Theory was considered for about ten years the best candidate for the unification of mi-
croscopic forces and also with gravity, as the low energy limit of this theory describes the
well-known 11-dim supergravity [25]. However, M-Theory never illuminated anyone of the
genuine features of the microphysical world: neither gauge groups, nor particle spectrum
nor even the number of distinct forces were selected by M-Theory. So lately C. Vafa has
resurrected a theory of his, of 1996 (F-Theory, which lives in 12 dimensions [11]) with the
assumption that perhaps decoupling gravity the new F-Theory, in adequate compactifica-
tion, can account for some of the features of the standard model [14, 15]. In this paper we
consider the geometric peculiarities of these dimension differences, for objects living in 10,
11 or 12 dimensions.

Within strings supersymmetry is mandatory, lest we want to contemplate 26 dimensions;
but we can only tolerate N = 1 Susy in our mundane, 4d space. Parity violation is a conspic-
uous feature of our world, but with N > 1 Susy, chiral partners are in the same multiplet;
so parity is conserved. The preservation of this feature puts stringent conditions on the com-
pactifying manifold with 10 − 4 = 6 dimensions, and corresponding results obtains from
descent 11 → 4 (M-Theory) and 12 → 4 (F-Theory) [11, 14, 15].

In particular, we need manifolds with SU(3) holonomy groups for the heterotic string
case [22], essentially because 4 = 3 + 1 in the descent Spin(6) ∼= SU(4) to SU(3). The
possible manifolds are signalled CY3. In M-Theory the chain is: descent Spin(7) to G2,
because 8 = 7 + 1 again. The restrictions on F-Theory depends on the signature (one or two
times) and will be dealt with later. The further break from the gauge group (e.g. E8 × E8

in the case of heterotic exceptional superstring) to more realistic Standard Model groups,
like E8 × E6 , and further E6 → SU(5) → SU(3)C × SU(2)L × U(1)Y requires additional
mechanisms, of course, see e.g. [23]. More recently, the descent from 12 to 4 in F-Theory is
managed in two or three steps, see below.

As a whole, there are many ways to get four-dimensional models using different com-
pactifications as intermediates. There are relations between several of these constructs due
to special dualities which appear in the process. As an example, we point out here differ-
ent equivalences in seven dimensions giving rise to a web of dualities (with F and M for
F-theory resp. M-Theory) [1]

F/K3 × S1 ∼ het/T 3 ∼ IIB/S2 × S1 ∼ M/K3 ∼ IIA/S2 × S1. (1)

This can be pursued, of course, to lower dimensions. The main focus of this paper is the
study of these compactifications down to four dimensions within the perspective of dualities.
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We shall focus mainly in four groups, SU(4), Spin(7), G2 and SU(3). All these can be seen
as subgroups of SO(8), the maximal compact group of the F-Theory compactification down
to four dimensions (12 → 4): This can be obtained by breaking the space-time symmetry
SO(1,11) down to the subgroup SO(1,3) × SO(8). We shall not be much concerned with
the manifolds themselves.

On the other hand, the relation of the above groups with the octonion division algebra
should be evident [26], as e.g. Spin(7) acts in the 7-sphere of unit octonions, G2 in the
6-sphere of unit imaginary octonions, and SU(3) on the equator of the later; we devote
some space in Appendix to study in detail such connections. We shall exhibit also in Sect. 4
some exact triple sequences, which relate the precise mathematical relations between these
holonomy groups.

The organization of the paper is as follows. In Sect. 2 we recall the classification of
special holonomy manifolds by Berger (1955). In Sect. 3 we review different ways of con-
structing four-dimensional models with minimal number of supercharges from higher di-
mensional supersymmetric theories. Section 4 deals with F-theory and its relations with
holonomy groups, and exhibits also the exact sequences mentioned above. The Appendix
elaborates on generalities over the octonion division algebra.

2 Manifolds with Special Holonomy

2.1 About Holonomy Groups

The study of the supersymmetric theories and extended objects involves the prediction of
extra dimensions of space-time. However, as we see only 4 = (1 + 3) dimensions, some
mechanism has to be advocated to prevent the extra size of the space to be visible. The com-
pactification is the most accepted ingredient, namely making the extra dimensions too small
to be observable. In the original Kaluza-Klein type of theories (ca. 1920), the observable
gauge group in 4 dimensions came from the isometry groups of the compactifying space
(this is why the U(1) gauge group of electromagnetism came from the compactification
of the fifth dimension on a circle). But when supersymmetry is present, it was realized in
the early 80s that the holonomy groups of intermediate spaces respond of the number of
supercharges surviving in four dimensions [27].

In this section we review briefly the classification of special holonomy groups and mani-
folds in a form suitable for all later physical consideration. Note that the books of Joyce [28,
29] are the best modern references for this subject. Let M be any n dimensional differen-
tiable manifold. The structure group of the tangent bundle is a subgroup of the general linear
group, GL(n,R). Now the maximal compact group of the linear group is O(n). So the quo-
tient homogeneous space GL(n,R)

O(n)
is a contractible space; hence, a manifold admits always

a Riemannian metric g, whose tangent structure group is (a subgroup of) the orthogonal
group. The isometry group Isom(M) is the set of diffeomorphisms σ leaving g invariant.
For spheres we have Isom(Sn) = O(n + 1); for torii Isom(T n) = U(1)n.

For an arbitrary n dimensional Riemannian manifold M, the structure group of the tan-
gent bundle is, as said, a subgroup of O(n). Carrying a orthonormal frame ε of n vectors in
a point P through a closed loop γ in the manifold, by parallel transport back to P ,

γ : P → P ′ → P (2)

it becomes another frame ε′ = o · ε which is shifted by certain element o of O(n). This is the
holonomy element of the loop. All elements of all possible loops on the manifold from P to
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P make up the holonomy group of the manifold HolP (M), which is always a subgroup of
O(n), and is easily seen to be independent of the point P for an arcwise-connected manifold.
A generic Riemannian manifold would have holonomy O(n), or SO(n) if it is orientable,
whereas the isometry group is just the identity generically; in a way isometry and holonomy
are complementary.

For any vector bundle with a connection, the structure group reduces to the holonomy
group (reduction theorem). The corresponding Lie algebra of the holonomy group is gener-
ated by the curvature of the connection (the Ambrose-Singer theorem) [30].

2.2 Types of Special Holonomy Manifolds

The classification of special holonomy groups was carried by M. Berger in 1955. If the
manifold is irreducible, Hol(M) should lie in O(n). Its Lie algebra, as we said, is generated
by the curvature. For the irreducible non symmetric case, there are three double series of
classes of manifolds corresponding to the numbers R,C and H, and two isolated cases
related to the octonion numbers O. For each number domain there are the generic case and
the unimodular subgroup restriction. The list practically coincides with the list of groups
with transitive action on spheres.

The classification of holonomy groups is given in Table 1 [13].
Some explanations are in order. An arbitrary n-dimensional Riemannian manifold M

has O(n) as the maximal holonomy group. The obstruction to orientability is measured by
the first Stiefel-Witney class of the tangent bundle, w1(M) ≡ w1(T M) ∈ H 1(M,Z2).

A n-dimensional complex Kähler manifold parameterized by zi, i = 1, . . . , n has a closed
regular real Kähler two-form ω given in a local chart by

ω = iwij̄ dzi ∧ dz̄j̄ , dω = 0, (3)

where wij̄ can be expressed as

wij̄ = ∂2K

∂zi∂z̄j̄

, (4)

Table 1 Holonomy Groups
Numbers Group Unimodular form

R O(n) SO(n)

generic case orientable, w1 = 0

C U(n) SU(n)

Kähler, dω = 0 Calabi-Yau, c1 = 0

H Sp(1) × /2Sp(n) Sp(n)

Quaternionic Hyperkähler

O Spin(7) in 8d spaces G2 in 7d spaces

Oct(1) Aut(O)
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and where K is a locally defined function called the Kähler potential. The holonomy group
of such a geometry is U(n). Now as U(n)

SU(n)
= U(1), we have the diagram

SU(n)

↓
U(n) −→ B −→ M

det↓
U(1) −→ B ′ −→ M

(5)

where the middle line is the frame bundle: B is the principal bundle of unitary frames. The
last bundle is mapped to an element of H 2(M,Z); hence, the determinant map defines the
first Chern class of the bundle as c1(M) ∈ H 2(M,Z). It turns out then that when c1 = 0, the
Kähler manifold becomes a CY manifold with SU(n) holonomy group and it is Ricci flat,
Ric = 0; this is because ([28], p. 98), the Ricci tensor is equivalent to a 2-form proportional
to c1, which is zero in the CY case. Note that an one-dimensional CY manifold is nothing
but a torus T 2, as SU(1) = 1. So its Hodge diamond is given by

h0,0

h1,0 h0,1

h1,1
=

1
1 1

1
(6)

The second example of CY geometries is the K3 complex surface with SU(2) as holonomy
group. Its Hodge diamond reads

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h2,1 h1,2

h2,2

=

1
0 0

1 20 1.

0 0
1

(7)

Since SU(2) = Sp(1), the K3 surface is also a hyperkähler manifold: Notice that hyperkäh-
ler manifolds are also Calabi-Yau, but the quaternionic manifolds in general are not. Quater-
nionic manifolds have for holonomy Sp(1) × Sp(n)/Z2, abbreviated as Sp(1) × /2Sp(n) in
Table 1.

Finally, the two cases related to the octonions are G2, that is the octonion automorphism
group and Spin(7). The former is well known and we shall elaborate on it later; as for the
“Oct(1)” label for Spin(7), this will also be clarified in the Appendix.

Note that, in general, a manifold with a specific holonomy group Hol(M) = G implies
the manifold carries an additional structure, preserved by the group G. For example, an
orientable manifold, with holonomy within SO(n), has an invariant volume element, indeed
SO(n) = O(n)∩SL(n,R). A Kähler manifold, with holonomy inside U(n) has an invariant
closed 2-form as U(n) = O(2n)∩ Sp(n); a SU(n) holonomy manifold carries a holomophic
volume. A manifold with G2 holonomy will carry an invariant 3-form, etc.

3 Physical Compactification Scenarios

As we know superstring theory lives in ten dimensions [18]; down to four dimensions we
want only N = 1, i.e. four supercharges, as to allow for parity violation. We know that com-
pactification on a SU(n)-holonomy manifold would reduce the supercharges by a factor of
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Table 2 Diverse Compactifications

Theory Dim change Holonomy

Heter. string 10d −→ 4d SU(3) (CY3 manifold, Ricci flat)

M-theory 11d −→ 4d G2 (Ricci flat)

M-theory 11d −→ 3d Spin(7) (Ricci flat)

F-theory (1,11) 12d −→ 4d Spin(7),SU(4) (CY4)

F-theory (2,10) 12d −→ 4d Indefinite form of Spin(7) or Spin(8)

1/2n−1, so SU(3)-holonomy (i.e., a CY3) would be just right to descend from the heterotic
string (16 supercharges) to a four dimensional model with only four supercharges. Indeed,
the search for CY3 manifolds was a big industry in the 80s [22]. This choice is also nat-
ural, as SU(3) ⊂ SU(4) = Spin(6) → SO(6), and obviously as 4 = 3 + 1, SU(3) leaves one
surviving spinor.

In M-Theory living 11 dimensions, the candidate compactifying manifold would be one
with G2 holonomy group [4]: now the inclusions are G2 ⊂ SO(7) ← Spin(7), and 8 = 1+7,
as 2(7−1)/2 = 8, type real. G2-holonomy manifolds which are also Ricci flat, see again (Joyce,
[28], p. 244) and would preserve 1/23 supercharges, and in 11d there are 2(11−1)/2 = 32, type
real again as 10 − 1 = 9 ≡ 1 mod 8.

We can also consider eight-dimensional compactifying manifolds in at least two con-
texts: 1) Descend 11 → 3 just for illustrative purposes, and 2) F-Theory with metric
(1,11); the original suggestion of Vafa was 12 = (2,10), see [11, 12]. Here the manifolds
of choice would be either CY4, that is, SU(4)-holonomy manifolds, preserving 4 super-
charges out of 32 (which is what we want), or Spin(7), the last of the exceptional holonomy
groups; Spin(7) does the job as it has an irreducible 8d representation, same as Spin(8) and
Spin(7) ⊂ Spin(8). Table 2 sums up the situation.

We note that if we consider the conventional F-Theory with signature (2,10) it is neces-
sary to compactify in a manifold with signature (1,7).

4 Connections Between Holonomy Groups from F-theory

We consider now in the spirit of Vafa’s new F-theory compactifications [14, 15] relations
between special holonomy groups.

4.1 Holonomy Groups from F-theory Compactification

In F-theory compactification, with one time, the four dimensional models can be obtained
by breaking the space-time symmetry SO(1,11) down to the following subgroup

SO(1,11) → SO(1,3) × SO(8) (8)

where SO(8) is the maximal holonomy group of an eight-dimensional intermediate manifod
X8. All above discussed special holonomy group can be related to SO(8) symmetry. As we
know the Dynkin diagram for SO(8) is given by
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It is remarkable how the different special holonomy groups come from this Dynkin di-
agram. In particular, SU(4) and SU(3) can be obtained by deleting one and two nodes re-
spectively

The Dynkin diagram of SO(8) shows triality, the free permutations of the three external
nodes. Identifying these nodes, we get the G2 as the fix point set of S3 group. The Spin(7)

group can be obtained by identifying the right spin nodes:

As we see, all special holonomy groups can be related to the maximal holonomy of the
F-theory compactifications down to four dimensions.

4.2 Relations Between Different Special Holonomy Groups

Strings, M and F-theories are related by different sorts of dualities and compactifications.
As a consequence we expect that also the different holonomy groups used in various com-
pactifications should be connected. In what follows we address this question using exact
sequences and commutative diagrams for these groups. To start, we note the following. If
H ⊂ G with (left)-coset space X, we write H → G → X for G/H = X; when H is normal,
X becomes the quotient group. Some of next diagrams have been already given in [31].

The first diagram that we present here comes form the inclusion of the exceptional
holonomy group G2 ⊂ Spin(7). The later acts transitively in all units in O (octonions of
norm one, forming S7), whereas G2 = Aut(O) obviously leaves 1 invariant (the real part of
the octonion). So the main cross of the diagram takes the following form

Spin(6)

↓
G2 −→ Spin(7) −→ S7

↓
S6

(9)
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where the vertical line is elemental.1 With the A3 = D3 isomorphism Spin(6) = SU(4) and
the fact that SU(3) ⊂ G2 ∩ (Spin(6) = SU(4)), we can complete the previous cross. The
result is given by the diagram

SU(3) −→ SU(4) = Spin(6) −→ S7

↓ ↓ ‖
G2 −→ Spin(7) −→ S7.
↓ ↓
S6 === S6

(10)

From this picture we can see in particular the octonionic nature of SU(3). It is a group of
automorphism of octonions, fixing the product, say (ij)k. There is a suspicion, still conjec-
tural, that this is the reason why the gauge group of the strong forces is SU(3) color.
To get the second diagram, we start by another obvious cross, since Spin(7) is the (universal)
double cover of SO(7). In this way, we have the following diagram

Z2

↓
G2 −→ Spin(7) −→ S7.

↓
SO(7)

(11)

It is known that G2 does not have a centre, so Z2 = Z2 must be the upper row. The rest is
easy to complete since S7/Z2 is the real projective space RP7. We end up with the following
picture

Z2 === Z2

↓ ↓
G2 −→ Spin(7) −→ S7.
‖ ↓ ↓
G2 −→ SO(7) −→ RP 7

(12)

From this diagram one can learn just the lower row, somewhat unexpected, until one sees the
middle row. The lower row is also a remainder that the orthogonal groups have torsion [32].

In what follows, we incorporate the SO(8) symmetry of F-theory compactifications in
the diagrams. We will give two diagrams connecting SO(8) with special holonomy groups.
In terms of CY holonomy groups, we have the following picture

SU(3) −→ SU(4) = Spin(6) −→ S7

↓ ↓ ‖
Spin(7) −→ SO(8) −→ S7,
↓ ↓
X13 === X13

(13)

where X13 is a 13-dimensional homogeneous space.
The last diagram is obtained by asking the question how does Spin(7) act transitively and

isometrically in the seventh sphere S7. Indeed, it must be a subgroup of SO(8). What about

1The spin groups acting on the natural spheres via the SO (covered) groups, Spin(n)/Z2 = SO(n).
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the quotient (homogeneous space)? To answer this question, we start first with the following
incomplete cross

Spin(7) −→ S7

↓ ‖
SO(7) −→ SO(8) −→ S7

↓
??

(14)

and then try to finish it. Indeed, G2 lies inside both Spin(7) and SO(7), then it must be their
intersection and must appear in the upper left corner. The rest of the diagram can be obtained
easily, and the result is

G2 −→ Spin(7) −→ S7

↓ ↓ ‖
SO(7) −→ SO(8) −→ S7.
↓ ↓
RP7 === RP7

(15)

The new result we learn is just the middle column involving th maximal holonomy group of
F-theory compactification to four dimensions.

This completes our study of the relations between holonomy groups which are suitable
for the compactification of superstrings, M, F-theories respectively. We have found three
triple exact sequences explaining some links between these groups. One of the nice results
that one gets from the diagrams is that one can also see the possible connections between
the corresponding geometries. Indeed, from the following sequence of inclusions

SU(3) −→ G2 −→ S6, (16)

one can see that the manifold with G2 holonomy can be constructed in terms of CY three
folds with the SU(3) holonomy group [28]. The construction is given by the following seven
dimensional orbifold space

X7(G2) = CY3 × S1

Z2
(17)

The Betti numbers of X7(G2) can be fixed by the Hodge numbers of CY3, which are given
by the number of their two and three non trivial cycles. Z2 acts as the reverse transformation
(x → −x) on the circle S1 and as an involution in the CY3 space in order to mantain the
G2 structure. The action on the CY3 is just a simply complex conjugation of its complex
coordinates, (zi → z̄i ). In this way, the associative 3-form � of X7(G2) can be expressed as

� = ω ∧ dx + Re(	). (18)

It is then easy to see that the G2 structure is preserved by the involution, since both the
Kahler form ω of the CY3 and the one-form dx of the circle change sign while the holo-
mophic Re(	 = dz1 ∧ dz2 ∧ dz3) is invariant. We can suppose the same thing for the mani-
fold with Spin(7) holonomy, it can be constructed either from manifold with G2 holonomy
or CY4. This can be easily seen from the subdiagram (10).
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Appendix: The Octonions

We recall here some properties of division algebras [33] in relation with special holonomy
groups and manifolds. Starting with the real numbers R, the space R2 becomes an algebra
with i ≡ {0,1} and i2 = −1: we get the complex number C. It is a commutative and associa-
tive division algebra. Adding a second unit j , j 2 = −1 a third ij is necessary, with ij = −ji,
and we obtain the division algebra of quaternions H in R4. It is anticommutative but still as-
sociative. Adding another independent unit k to i and j , with k2 = −1, ik = −ki, jk = −kj ,
we have to complete with e7 = (ij)k to the algebra of octonions O in R8, with units
1; i, j, k; ij, jk, ki; (ij)k = −i(jk). It is neither commutative nor associative, but still a di-
vision algebra: if o = u0 + 
7

i=1uiei we have

ō := u0 − 
7
i=1uiei N (o) = norm(o):= ōo; inverseo−1 = ō

N (o)
. (19)

The associator {o1, o2, o3} := (o1o2)o3 − o1(o2o3) is completely antisymmetric. The four
algebras R, C, H, O are composition algebras, that is, we have N (xy) = N (x)N (y). The
automorphism groups of the algebra are easily seen to be

Aut(R) = 1, Aut(C) = Z2, Aut(H) = SO(3), Aut(O) := G2. (20)

The norm-one elements form, for R, C, H, O, respectively

O(1) = Z2 = S0; U(1) = SO(2) = S1;
(21)

Sp(1) = SU(2) = Spin(3) = S3; and S7.

Now S7 has an invertible product structure, in particular is parallelizable, but is not a
group, because nonassociativity. Let us name jokingly �Oct(1)′ = S7. One obtains a bona
fide group by stabilizing S7 by the octonion automorphism group G2 [34]. The result is
Spin(7) ≈ G2(×S7; we shall name Spin(7) := Oct(1), where (× just means twisted product
[35]. We recall now the description of compact Lie groups as finitely twisted products of
odd dimensional spheres (Hopf 1941); for details see [35]. For example in the quaternion
case one gets the sequence

Sp(1) = Spin(3) = S3, Sp(1)2 = Spin(4) = S3 × S3,
(22)

Sp(2) = Spin(5) = S3(×S7.

There are analogous results for the octonions, after G2 stabilization. The series goes up to
dim 3, but not beyond; this is due to the lack of associativity. We just write the results, adding
the sphere exponents

G2 = SOct(1) ≈ S3(×S11; Spin(8) = Oct(1)2 ≈ S3(×S7(×S7(×S11

(23)

Spin(9) := Oct(2) ≈ S3(×S7(×S11(×S15; F4 := SOct(3) ≈ S3(×S11(×S15(×S23

where by the prefix “S” we mean the unimodular restriction (no S7 factors). This is similar
to SO and SU for R and C respectively. The usefulness of the notation can be seen e.g. in
the projective line and plane:

HP1 = S4 = Sp(2)/Sp(1)2 corresponds to OP1 = S8 = Spin(9)/Spin(8),
(24)

CP2 = S5/S1 = SU(3)/U(2) corresponds to OP2 = SOct(3)/Oct(2) = F4/Spin(9).
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The later is called the Moufang plane (Moufang 1933; to call it the Cayley plane is histori-
cally inaccurate).

In any case, this use, G2 ∼ SOct(1) etc., is just a notational convention, that we find
useful, if carefully employed. We finish by remarking that little use has been made so
far of the fundamental triality property of the O(8) group and the octonions, namely
Out[Spin(8)] ∼ Aut/Inner = S3, the order three symmetric group. Perhaps in a deeper analy-
sis this triality will show up in particle physics.

The necessary properties we need of the division algebra of the octonions O are described
above. Here we recall that G2 is the automorphism group of the octonions (as SO(3) is
Aut(H) and Z2 = Aut(C) ); the reals R have not autos, hence the representation 8 of G2 in
the octonions split naturally in 8 = 1 + 7. Note that G2 acts transitively in the S6 sphere
of unit imaginary octonions. This implies the 6-sphere acquires a quasi-complex structure
(Borel-Serre). The sequence reads as follows

SU(3) → G2 → S6 (8 + 6 = 14) (25)

where SU(3) acts in the equator S5 ∈ R6 as the representation 3̄ + 3. Now the octonionic
product preserved by G2, as any algebra (xy = z), defines an invariant T 1

2 tensor and the
conservation of the norm is like preserving a quadratic form. The T 1

2 tensor can be seen then
as a T 0

3 tensor. Now the alternating property of the octonionic product is equivalent to this
T 0

3 tensor to become a 3-form in R7, ∧T 0
3 , which is generic, (i.e., they make up an open set).

This implies

dimG2 = dim GL(7,R) − dim ∧ T 0
3 = 49 − 35 = 14. (26)

Besides, the dual form ∧T 0
4 is also invariant, implying G2 is unimodular, i.e. lies inside

SO(7). The dimension 14 of this G2 can of course be proved directly [36].
As with respect to Spin(7), it has a real 8-dimensional representation as we said, and

hence it acts in S7, indeed transitively. The little group acts in the S6 equator, and it is
certainly G2. In fact, there is some sense, as explained above, to call G2 and Spin(7) respec-
tively SOct(1) and Oct(1).
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